468 research outputs found

    ¹³C/¹⁹F high-resolution solid-state NMR studies on layered carbon-fluorine compounds

    Get PDF
    ¹³C/¹⁹F high-resolution solid-state NMR was applied to examine local structures of a stage-1 layered carbon-fluorine compound (C₂.₈). Four ¹⁹F(F1∼F4) and two ¹³C signals (C1 and C2) unraveled by high magnetic field (14 T) and fast magic-angle spinning (>35 kHz) were examined by various two-dimensional correlation experiments. In addition to “through space” ¹³C-¹⁹F and ¹⁹F-¹⁹F dipolar correlation, which reveals distance proximity among ¹³C/¹⁹F spins, we examined feasibility of applying the J interaction for examination of “through bond” correlation. These experiments led assignment of two of the four F signals (F2 and F3) to F directly covalent bonded to sp³ carbon and an interleaving domain for the local structure of the minor C2-F3 group among the major domain composed of C2-F2 and sp² carbon (C1). The other two ¹⁹F signals (F1 and F4) were assigned to as CF₂ and F ions, respectively. A spectroscopic evidence for the C-F bond being the σ bond is given by the observation of a non-zero one-bond J value (193 ± 4 Hz) for C2-F. Further, the similar JCF = 197 Hz for C-F in poly(carbon fluoride) confirmed that the so-called “semi-ionic/semi-covalent” C-F bond in C₂.₈F is actually a “standard” covalent C-F bond

    Suzaku Spectroscopy of an X-Ray Reflection Nebula and a New Supernova Remnant Candidate in the Sgr B1 Region

    Full text link
    We made a 100 ks observation of the Sagittarius (Sgr) B1 region at (l, b) = (0.5, -0.1) near to the Galactic center (GC) with the Suzaku/XIS. Emission lines of S XV, Fe I, Fe XXV, and Fe XXVI were clearly detected in the spectrum. We found that the Fe XXV and Fe XXVI line emissions smoothly distribute over the Sgr B1 and B2 regions connecting from the GC. This result suggests that the GC hot plasma extends at least up to the Sgr B region with a constant temperature. There are two diffuse X-ray sources in the observed region. One of the two (G0.42-0.04) is newly discovered, and exhibits a strong S XV Ka emission line, suggesting a candidate for a supernova remnant located in the GC region. The other one (M0.51-0.10), having a prominent Fe I Ka emission line and a strongly absorbed continuum, is likely to be an X-ray reflection nebula. There is no near source bright enough to irradiate M0.51-0.10. However, the Fe I Ka emission can be explained if Sgr A* was ~ 10^6 times brighter 300 years ago, the light travel time for 100 pc to M0.51-0.10, than it is at present.Comment: 10 pages, 10 figure

    Influence of friction stir welding conditions on joinability of oxide dispersion strengthened steel / F82H ferritic/martensitic steel joint

    Get PDF
    AbstractAs one of the joining methods for the reduced activation materials to realize the fusion reactors with high efficiency in the future, friction stir welding (FSW) is selected for fabricating the dissimilar butt joint between oxide-dispersion strengthened (ODS) alloy and F82H, and the effect of FSW conditions on joinability of this dissimilar joint was examined. The sound dissimilar joint can be produced under the condition that ODS plate is set on the advancing side and the FSW tool is plunged into F82H. As for the mild steel backside plate, the sound joint can be fabricated in the case of 150rpm rotational speed and 50mm/min traveling speed. On the other hand, by employing the silicon nitride backside plate, the total heat input should be decreased to obtain the sound joint, where the traveling speed is 100 or 150mm/min and rotational speed is 150rpm. In addition, the finite element heat conduction analyses indicate that the influence of traveling speed on the joinability with the mild steel backside plate seems to be smaller than that with the silicon nitride plate and the allowable range of the appropriate traveling speed for the joint becomes to be wider by employing the silicon nitride backside plate

    Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals

    Get PDF
    Electronic states of P donors in Si nanocrystals (nc-Si) embedded in insulating glass matrices have been studied by electron spin resonance. Doping of P donors into nc-Si was demonstrated by the observation of optical absorption in the infrared region due to intraconduction band transitions. P hyperfine structure (hfs) was successfully observed at low temperatures. The observed splitting of the hfs was found to be much larger than that of the bulk Si:P and depended strongly on the size of nc-Si. The observed strong size dependence indicates that the enhancement of the hyperfine splitting is caused by the quantum confinement of P donors in nc-Si
    corecore